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LIMITED-VIEW PHOTOACOUSTIC TOMOGRAPHY

• Planar ultrasound sensor:
 Limited-view setting
 (Potential) Sparse-sampling 

for speed-up

[Jathoul et al., Nature Photonics, 2015]

• 3D imaging is expensive:
 Image (volume) size
 Data size: high temporal sampling (5x)
 Forward operator: Wave equation ~12 sec.

• Linear inverse problem :
Recover initial pressure from 
measured acoustic signal 



THE VARIATIONAL APPROACH



Iterative reconstruction:
Non-negative least squares (NNLS)

Time reversal
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LIMITED-VIEW: ITERATIVE RECONSTRUCTIONS,
REGULARISATION AND SUB-SAMPLED DATA



THE FORMAL NOTION OF A 
“CONVERGENT REGULARISATION”

We say that a regularisation is convergent 
when: 
• The solutions ∗ are well-defined and depend 

continuously on the regularisation parameter 
and noise level 

• When noise vanishes, i.e., and , 
then solutions converge to the so-called 

-minimising solution:

௫
subject to 

with  the noise free data

Given the general variational formulation
∗

௫
 

[Scherzer, Grasmair, Grossauer, Haltmeier, Variational Methods in Imaging, 2009]



BENEFITS AND LIMITATIONS
Positive: 
• We can quantify and analyse solutions 
• The reconstruction operator is well-defined as the solution of a variational problem
 No (training) data dependency

• We know that obtained solutions are “data-consistent” and converge (continuously) to 
solutions of the measurement equation , if noise vanishes.

Negative:
• Slow convergence: can take 100 - 1000 of iterations.
• Limited expressivity: Reconstruction quality depends on prior information encoded in the 

regulariser Balance representation of data and desirable analytical conditions.
• Unfortunately, computing good solutions is not as straight-forward as it may seem: 
 Choice of regulariser
 Choice of regularisation parameter



THE DATA-DRIVEN APPROACH
• Previous limitations can be overcome by data-driven approaches:

Simply speaking, instead of hand-crafting a regularisation and prior, we can learn 
the prior information from the data itself

More efficient reconstruction operators or optimisation schemes can be learned to 
compute solutions

BUT: We may lose some (or even all) of the theoretical conditions we required before.
(Depending on the approach taken as we see shortly)



LEARNED ITERATIVE RECONSTRUCTIONS

Pro: 
• Interpretable
• Convergence & reconstruction guarantees
Contra: 
• Slow to converge
• Difficult to choose regulariser and parameter



LEARNED ITERATIVE RECONSTRUCTIONS

Pro: 
• Interpretable
• Convergence & reconstruction guarantees
Contra: 
• Slow to converge
• Difficult to choose regulariser and parameter

[Adler & Öktem, 2018], [Putzky & Welling, 2017]



TRAINING PROCEDURE: GREEDY APPROACH

• End-to-end training is not (readily) scalable depending on:
 Memory limitations
 Operator evaluation: Repeated application of forward/adjoint operator
 3D PAT  1 (unrolled) iteration takes ~25sec. (forward + adjoint)



NETWORK AND TRAINING

240x240x80



APPLICATION TO HUMAN IN-VIVO MEASUREMENTS
• Reduces reconstruction time by a factor 4 (by reduction of iterations)

• Considerably improves reconstruction quality

Reference
Fully-sampled data

Learned Reconstruction
4x sub-sampled, 5 Iterations, 
Time: 2.5 min., PSNR: 41.40

Total Variation Reconstruction
4x sub-sampled, 20 Iterations,

Time: 10 min., PSNR: 38.05

[Hauptmann et al., IEEE Transactions on Medical Imaging, 2018]



UTILISING A REDUCED MODEL
•Bottleneck of iterative reconstruction time is the application of the forward model

Use a fast approximate model in the iterative reconstruction instead (8x faster)

But approximate model introduces additional artefacts

Phantom
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UTILISING A REDUCED MODEL: IMPLICIT CORRECTION

• Trained supervised on reference 
reconstruction from fully sampled data

• 5 iterates are trained in a greedy approach



ACCELERATION BY USING AN APPROXIMATE MODEL

Reference
Fully-sampled data

Learned Reconstruction
4x sub-sampled, 5 Iterations, 
Time: 20 sec., PSNR: 42.18

Total Variation Reconstruction
4x sub-sampled, 20 Iterations,

Time: 10 min., PSNR: 41.16

• Reduces reconstruction time by another factor of ~8 (  32x compared to TV)
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[Hauptmann et al., Machine Learning for Medical Image Reconstruction, 2018]



• Image quality depends on multiple factors, such 
as:

- Acquisition time 

- Signal strength (radiation exposure)

- Patient movements

- Cost-point

• Advanced mathematical techniques used to 
compensate, but:

- Can be slow  Not applicable for real-time 

- Analytic prior  Do not describe targets well

- Accurate models  Computationally expensive

RECAP, WHY WE NEED LEARNING:



THE DATA-DRIVEN APPROACH: TWO-STEP
We now want to learn a parameterised reconstruction operator, such that

ఏ

Two-step approach: 1.) Compute a reconstruction (undersampled, zero-filled k-space data)
2.) Train a network ఏ as post-processing to remove artefacts and noise 

[Hauptmann, et al., Magnetic Resonance in Medicine, 2019]



THE DATA-DRIVEN APPROACH: ITERATIVE
More powerful and successful methods rather compute reconstructions iteratively, where an 
updating operator ఏೖ

is learned. For instance, in general form as:
ାଵ

ఏ
ାଵ

These include many popular approaches such as:
• Variational Networks [Hammernik et al., Magnetic resonance in medicine, 2018]
• Learned Gradient Schemes [Adler & Öktem, Inverse Problems, 2017]
• Plug-and-Play type approaches [Venkatakrishnan, Bouman, Wohlberg, GlobalSIP, 2013]

∗ CNN

K-times

Note, for
𝐷 𝐴𝑥, 𝑦 = ||𝐴𝑥 − 𝑦||ଶ

ଶ

We get
∇||𝐴𝑥 − 𝑦||ଶ

ଶ = 2𝐴∗ 𝐴𝑥 − 𝑦 .



EMPIRICAL SUCCESS WITHOUT 
THEORETICAL GUARANTEES?

• Most successful methods come without 
theoretical guarantees

• Convergence proofs can be established by 
restricting the networks: 

- Contractiveness/non-expansive

- Convexity

- Invertibility

• Disclaimer: Limiting expressivity 

Worse quantitative performance



WHAT CAN WE SAY THEORETICALLY?
• How stable are learned reconstruction methods?

• Do learned unrolled/iterative approaches converge? 

• Do we minimise the variational cost function, or a related one? 

• Is the learned reconstruction a (formal) regularisation, i.e., can we say
something about the case of vanishing noise?



OVERVIEW OF EXISTING APPROACHES



1. Note, since deep neural networks are compositions of affine functions and smoothly 
varying nonlinear activation functions, a reconstruction operator ఏ is continuous 
and a constant exists. 
 That makes the mapping formally stable, but might be large



2. The perturbation could be arbitrarily small for small .
If is small the reconstruction operator is insensitive to these perturbations
An accurate ఏ must have a large Lipschitz constant 



• Concern about the adversarial stability (or lack 
thereof) of deep learning-based approaches has 
been raised [S2].

• Subsequent work [S1] performed a systematic 
comparison of data-driven methods with the 
classical (TV)-regularized solution. 
 Learned methods were found to be as 
robust as TV to adversarial noise.
 For the FastMRI dataset learned methods 
were more resilient to large perturbations.

• Finally, [S3] showed that learned methods are 
more robust with respect to ℓஶ-perturbations. 
(Capturing localised artifacts)



FIXED POINT AND OBJECTIVE CONVERGENCE
Fixed point convergence can be (comparably) easily achieved when 
considering a proximal gradient type update:

𝑥ାଵ = 𝑅 𝑥 = 𝛬ఏ 𝑥 − 𝜆𝛻𝐷 𝐴𝑥, 𝑦 . 

When Λఏ is trained to be 1-Lipschitz, i.e., with constant L < 1 and 
𝜆 < ||𝐴||

ଶ  , then the above iterations are contractive and will 
converge to a fixed point

𝑥ஶ = 𝑅(𝑥ஶ).

This tells us that the iterations are stable, 
BUT: This does not say anything about the “goodness” of 𝑥ஶ.
Objective convergence is more desirable, but also more 

restrictive, in short:
We need to parameterise the network Λఏ in such a way that it 
corresponds to the gradient of a (possibly convex) function 
(representing the regulariser).

[Hurault, Leclaire, Papadakis, arXiv:2110.03220, 2021]  [Gilton, Ongie, Willett, IEEE Transactions on Computational Imaging, 2021]  



In fact, we can even obtain a convergent 
regularisation strategy with a learned regulariser: 

Learn just the regulariser such that
𝐷 𝐴𝑥, 𝑦 + 𝛼𝑅ఏ 𝑥 ,

we can then enforce conditions to ensure well-
posedness of the solution operator. 

 Simply put: when 𝑅ఏ is convex we obtain a 
classical convergent regularisation

 Composition with a regularisation functional 𝑔:
𝐷 𝐴𝑥, 𝑦 + 𝛼𝑔(𝑅ఏ(𝑥))

 Plug-and-play with linear denoiser: Quadratic 𝑅

BUT: We need to solve again the variational 
problem, which is slow.

CONVERGENT REGULARISATION

[Lunz, Öktem, Schönlieb, NeurIPS, 2018] [Li, Schwab, Antholzer, Haltmeier, Inverse Problems, 2020] [Hauptmann, Mukherjee, Schönlieb, Sherry, arXiv] 



CONCLUSIONS

• Inverse problems and regularisation theory helps to understand the problem

• Provide convergence, stability, and data-consistent reconstructions

• Classical methods are reliable but have shortcomings: 
computation times, expressivity, hand-tuning

• Data-driven approaches can solve shortcomings, but guarantees may be lost 
We can reintroduce varying levels of guarantees
 The more theoretical guarantees we get, the more conditions are enforced

More restrictive conditions Worse (quantitative) performance



WHAT’S TO COME?
• Currently: trade-off between performance and theoretical guarantees.

• But how much guarantee is needed, if performance is better?
 Importance of challenges like FastMRI!
Do clinicians/engineers care?

• Untouched here: Generalisation and the role of training data  
Here reconstruction guarantees can be certainly useful!
Need for more semi- or unsupervised methods?

Learned approaches are here to stay!


