ﬂ Finnish Centre of Excellence in sy
i Inverse Modelling and Imaging ih
, 4 20159025 [EF UNIVERSITY OF OULU

LEARNED MODEL-BASED RECONSTRUCTIONS FOR

INVERSE PROBLEMS:
ROBUSTNESS AND CONVERGENCE GUARANTEES

Andreas Hauptmann
University of Oulu
Research Unit of Mathematical Sciences
&
University College London
Department of Computer Science
Mathematics of Data Science seminar

DTU, Lyngby, Denmark
23 November 2023



ﬂ Finnish Centre of Excellence in N
i Inverse Modelling and Imaging
. j 2018-2025 [E] UNIVERSITY OF OULU

\’ UNIVERSITY OF
\’ EASTERN FINLAND

Finnish Centre of Excellence in |
Inverse Modelling and Imaging N/

2018-2025 w

L UNIVERSITY LUT
A& OF OULU Lappeenranta
/ University of Technology

CENTRES OF EXCELLENCE (((
-w

IN RESEARCH I UNIVERSITY OF JYVASKYLA

‘ UNIVERSITY OF HELSINKI

(

N J Tampere University

@ A' Aalto University
FINNISH METEOROLOGICAL INSTITUTE

(] o -

Flagship of Advanced Mathematics

for Sensing, Imaging and Modelling (FAME)
2024-2031



ﬂ Finnish Centre of Excellence in S
K & Inverse Modelling and Imagin f
l %| i I 99 G uNIVERSITY OF oULU =

2018-2025

LIMITED-VIEW PHOTOACOUSTIC TOMOGRAPHY

* Linear inverse problem Ax = y:
Recover initial pressure x from

measured acoustic signal y A\\J\
N sensor head
114
iy Excitation
Sensor light
interrogation
beam\

* Planar ultrasound sensor:
» Limited-view setting
» (Potential) Sparse-sampling
for speed-up

QF (600-1200nm)
<«— Sensor
Xy A _
scanmer e interrogation
beam (1550nm)

[Jathoul et al., Nature Photonics, 2015]

- 3D imaging is expensive:
» Image (volume) size
» Data size: high temporal sampling (5x)
» Forward operator: Wave equation ~12 sec.
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THE VARIATIONAL APPROACH

Classic variational approach: find x from measurement y as a D(x;y) = §||Ax — vl

minimiser of
and

e argmin (00} = g {D0) R || Gy — 4o

A classic gradient descent scheme would be given by

Xit1 = Xi — Vk+1 (A" (Axi — y) + AVR(x;))




LIMITED-VIEW: |

MPLED DATA

N
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THE FORMAL NOTION OF A
“CONVERGENT REGULARISATION?”

Given the general variational formulation

x* =argminD(x,y) + aR(x) ,
X

We say that a regularisation is convergent
when:
* The solutions x™ are well-defined and depend

(a) 6=4 (b) 6=2 (c) 6=1

continuously on the regularisation parameter
a and noise level 6.

* When noise vanishes, i.e., § = 0 anc
then solutions converge to the so-call

R -minimising solution:
X € arg mxinR(x) subject to y¥ =

(d) 6=0.5 (e) =0.25 (f) Ground-Truth

with y° the noise free data
[Scherzer, Grasmair, Grossauer, Haltmeier, Variational Methods in Imaging, 2009]
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BENEFITS AND LIMITATIONS

Positive:
* We can quantify and analyse solutions
* The reconstruction operator is well-defined as the solution of a variational problem
— No (training) data dependency
* We know that obtained solutions are “data-consistent” and converge (continuously) to
solutions of the measurement equation Ax = y?, if noise vanishes.

Negative:

* Slow convergence: can take 100 - 1000 of iterations.

* Limited expressivity: Reconstruction quality depends on prior information encoded in the
regulariser = Balance representation of data and desirable analytical conditions.

* Unfortunately, computing good solutions is not as straight-forward as it may seem:
—> Choice of regulariser
—> Choice of regularisation parameter
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THE DATA-DRIVEN APPROACH

* Previous limitations can be overcome by data-driven approaches:

—> Simply speaking, instead of hand-crafting a regularisation and prior, we can learn
the prior information from the data itself

— More efficient reconstruction operators or optimisation schemes can be learned to
compute solutions

BUT: We may lose some (or even all) of the theoretical conditions we required before.
(Depending on the approach taken as we see shortly)
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LEARNED ITERATIVE RECONSTRUCTIONS

Classic variational approach: find x from measurement y as a D(x;y) = 1||Ax — vl
minimiser of 2

and
e argmin {J60)} = srgmin (D0) R0V || )i ()

A classic gradient descent scheme would be given by

Xi+1 = Xi — Yk+1 (A" (Axi — y) + AVR(X;))
Pro:
* Interpretable
* Convergence & reconstruction guarantees
Contra:
* Slow to converge
* Difficult to choose regulariser and parameter
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LEARNED ITERATIVE RECONSTRUCTIONS

Classic variational approach: find x from measurement y as a D(x;y) = %HAX — vl

minimiser of
and

x € argx':nin {J(x)} = argxfni” {D(x}y) + AR(x')} . VD(x;y) = A (Ax —y)

A simple learned gradient-like scheme would be given by
Xi4+1 = ggi (X,‘,.A*(.AX,' — y)), | = 0, ceey N —1.

This defines a reconstruction operator when stopped after N
iterates:

A;(y) = xy where 0 = (6p,...,0n-1)

and initialisation xp = ATy (y).

[Adler & Oktem, 2018], [Putzky & Welling, 2017]



ﬂ Finnish Centre of Excellence in
j ; Inverse Modelling and Imaging

2018-2025

\ J rd
CCF uNIVERSITY OF ouLU

TRAINING PROCEDURE

Given supervised training data (xU), yU)) e X x Y.

Then an optimal parameter is found by
1 <& . .
mgin — Z} LB(X(J)’y(J))
J:

where the loss function is given as

Lo(x,y) == ||A£(y) — x||i for (x,y) e X x Y.

Greedy training: Require iterate-wise optimality.

Given only a loss function for the i:th unrolled iterate:
2

Lo, (xi,y) = ng,- (XiuA*(A(Xi) —¥)) — XH

X

where x; 1= Gy, | (X,-_l,A*(A(X,-_l) — y))

This constitutes an upper bound to end-to-end networks.

* End-to-end training is not (readily) scalabl
> Memory limitations

» Operator evaluation: Repeated application of forward /adjoint operator
» 3D PAT = 1 (unrolled) iteration takes ~25sec. (forward + adjoint)

e depending on:
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» With the computation of the gradient, total training time for
5 iterations takes 7 days

» Compare: End-to-end training would take about ~140 days

xi41 = Go, (xi, A (Ax; — y))

16 F
2405240480
240x240x80 32 H 16 F L _’@- Tht1

mm) RelU(convsyxsxs)
Vd(y, Azy e 16 H 32 ) \-(convsysxs)

E==) ReLU
== skip connection
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APPLICATION TO HUMAN IN-VIVO MEASUREMENTS

* Reduces reconstruction time by a factor 4 (by reduction of iterations)
» Considerably improves reconstruction quality

Reference Learned Reconstruction Total Variation Reconstruction
Fully-sampled data 4x sub-sampled, 5 Iterations, 4x sub-sampled, 20 Iterations,
Time: 2.5 min., PSNR: 41.40 Time: 10 min., PSNR: 38.05

[Hauptmann et al., IEEE Transactions on Medical Imaging, 201 8]
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UTILISING A REDUCED MODEL

*Bottleneck of iterative reconstruction time is the application of the forward model
»Use a fast approximate model in the iterative reconstruction instead (8x faster)

»But approximate model introduces additional artefacts

X Data

Phantom & . Reconstruction
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UTILISING A REDUCED MODEL: IMPLICIT CORRECTION

We formulate the updates now using an approximate gradient
Xk+1 = G0, (VD (xk: ¥ ) Xk)

with - o
VD(xk;y) := A" (Axk — y)-

16 16
M»M#B»

) VD(xi; y -»I I-»
reconstruction from fully sampled data 240 X 240 X 80

* Trained supervised on reference

* 5 iterates are trained in a greedy approach

120 x 120 x 40

32 64 32 16 1
I_I*I‘I@ = Xk+1

64 64' = ReLU(convi.syxz) WP concat

¥ maxpool,,, > addition
4 ReLU(convtsy.zxs) = RelU
5 CONViy3x3
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ACCELERATION BY USING AN APPROXIMATE MODEL

* Reduces reconstruction time by another factor of ~8 ( > 32x compared to TV)

Reference Learned Reconstruction Total Variation Reconstruction
Fully-sampled data 4x sub-sampled, 5 Iterations, 4x sub-sampled, 20 Iterations,
yEeme Time: 20 sec., PSNR: 42.18 Time: 10 min., PSNR: 41.16

14 mm x 14 mm

[Hauptmann et al., Machine Learning for Medical Image Reconstruction, 201 8]
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RECAP, WHY WE NEED LEARNING:

* Image quality depends on multiple factors, such
as:

- Acquisition time

- Signal strength (radiation exposure)
- Patient movements

- Cost-point

* Advanced mathematical techniques used to
compensate, but:

- Can be slow = Not applicable for real-time
- Analytic prior 2 Do not describe targets well

- Accurate models 2 Computationally expensive
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THE DATA DRIVEN APPROACH TWO STEP

We now want to learn a parameterised reconstruction operator, such that

Ro(y) = x

Two-step approach: 1.) Compute a reconstruction (undersampled, zero-filled k-space data)

2.) Train a network Ay as post-processing to remove artefacts and noise

3D residual U-Net architecture

128 x 128 x 20
32'

o 64 54 W m ReLU(conviyaxs)
¥ maxpool,,.
—) “B ReLU(convtsysys)
64 % 64% 10 5 CONV3yaa
155 T =) concat
op addition
32x32 x5I . . = el

[Hauptmann, et al., Magnetic Resonance in Medicine, 2019]
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THE DATA-DRIVEN APPROACH: ITERATIVE

More powerful and successful methods rather compute reconstructions iteratively, where an

updating operator Agkis learned. For instance, in general form as: Note, for
D(Ax,y) = ||Ax — ¥}
k+1 _— k+1 2
X = Ag,, (x , VD (Ax, y)) . We get
—vlI1Z2 = 24%(Ax —
These include many popular approaches such as: Vildx — yllz = 24"(Ax — y).

* Variational Networks [Hammernik et al., Magnetic resonance in medicine, 201 8]
* Learned Gradient Schemes [Adler & Oktem, Inverse Problems, 2017]
* Plug-and-Play type approaches [Venkatakrishnan, Bouman, Wohlberg, GlobalSIP, 201 3]

K-times D
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EMPIRICAL SUCCESS WITHOUT
THEORETICAL GUARANTEES?

* Most successful methods come without
theoretical guarantees

* Convergence proofs can be established by
restricting the networks:

- Contractiveness/non-expansive
- Convexity

- Invertibility

* Disclaimer: Limiting expressivity

- Worse quantitative performance




fﬁ A vty oo
WHAT CAN WE SAY THEORETICALLY?

e How stable are learned reconstruction methods?

e Do learned unrolled/iterative approaches converge?
e Do we minimise the variational cost function, or a related one?

e |s the learned reconstruction a (formal) regularisation, i.e., can we say
something about the case of vanishing noise?

PHYSICS-DRIVEN MACHINE LEARNING
FOR COMPUTATIONAL IMAGING

: Subhadip Mukherjee®, Andreas H |
Learned Reconstruction Methods R T ki el sty e
Wiﬂl convergence GU(II'(II‘II'EES and Carola-Bibiane Schonlieb

A survey of concepts and applications |EEE SIGNAL PROCESSING MAGAZINE | January 2023 |
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OVERVIEW OF EXISTING APPROACHES

Learned regularizer Iterative Two-step Plug-and-play

1 1 I
1 1 I
1 1 I
1 1 I
/ | i i \
s : i 1 I Explicit Implicit .
[ Variational ] [ Bayesian ] ! E i [Regularization ] [Regularization Bayesian PnP
1
-—— 1 1 I
- Optimal'"\' e : : '
Tikhonov _' -~ map:  ~. | 1 - - i Proximal
- 2y DT - ~ ADMM
~==z= \_ ADMM /| i (" Deep Nul Sy Methods S
(’ Network \) o ‘ : : " Space _ / | . MAP: ™ _
«. Tikhonov _ "~ "Monte Carlo ™ ~ 1 Equilibrium ; e e 1~ Regularization . PnPSGD .
pts o Ll i /) by Denoisin =
< “Adversarial = ~ 'tSampImg - — i : i i - ~ PnP ULA ~
{ : T ! ! Convolutional :
 FIEOUANZENE. o : i Framelets | MMO g BB
_— | Unrolled AR i i |
Total Deep | - -
Variation : : ;
| 1 I
1 1 I
\ (a) i (b) i (c) E (d) /

e S | i
Stability Fixed Point Minimizer = | Regularization ; ; Bayesian !
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Stahility Versus Accuracy

Consider a trained reconstruction operator R, with fixed One possibility for a stability analysis is to consider the
network parameters (learned from training data). The Lipschitz constant L of the mapping Re, which is given
reconstruction produced by R, is said to be stable if by the smallest L >0, such that
Ro: Y — X is a continuous function of the observed data.

Formally, stability demands that | Ro(y) = Ray2) || < L[ y1 — 2|

forally,y. €Y. (S1)

| Ro(y +w) —Ro(y) [[x — 0 as [|w]ly — 0.

1. Note, since deep neural networks are compositions of affine functions and smoothly
varying nonlinear activation functions, a reconstruction operator Ry is continuous
and a constant L exists.

— That makes the mapping formally stable, but L might be large
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Stabhility Versus Accuracy

Consider a trained reconstruction operator R, with fixed One possibility for a stability analysis is fo consider the
network parameters (learned from training data). The Lipschitz constant L of the mapping Re, which is given
reconstruction produced by R. is said to be stable if by the smallest >0, such that

Ro: Y — X is a continuous function of the observed data.
Formally, stability demands that | Re(y)) — Re(y2) | < Ll y1 — 32|, for all yi, y €Y. (S1)

| Ro(y +w) — Ro() [l — 0 as | w [}y — O. Additionally, a consequence of (S1) is that the reconstruc-
. ! tion of a slightly perturbed image must satisfy

" Ro(A(x+17)) — Ro(Ax) || < L|| An || for any perturbation 7.

2. The perturbation ||An|| could be arbitrarily small for small 7.
—2If L is small the reconstruction operator is insensitive to these perturbations
—> An accurate Ry must have a large Lipschitz constant L
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Adversarial Robustness

The adversarial robustness of a trained reconstruction
operator R, is measured by the largest deviation caused
in the reconstruction by a small perfurbation in the data.
For a given y,=Ax,€ Y, where x, is the underlying
image, and a given noise level €,, this is defined formally

as [S1]
Outv = sup || Ro(yo +w)— Re(}’o) ||2 (52)

w: || w||<€o

If 8. is small for small €, the reconstruction method R,
is said to be adversarially robust.

References
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Mach. Intell., early access, Feb. 4, 2022, doi: 10.1109/
TPAMI.2022.3148324.
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pp. 30,088-30,095, 2020, doi: 10.1073/pnas.1907377117.

[S3] R. Alaifari, G. S. Alberti, and T. Gauksson, “Localized adversarial
artifacts for compressed sensing MRI,” 2022, arXiv:2206.0528%vI.

Concern about the adversarial stability (or lack

thereof) of deep learning-based approaches has
been raised [S2].

Subsequent work [S1] performed a systematic
comparison of data-driven methods with the
classical (TV)-regularized solution.
- Learned methods were found to be as
robust as TV to adversarial noise.
—> For the FastMRI dataset learned methods
were more resilient to large perturbations.

Finally, [S3] showed that learned methods are
more robust with respect to £ ,-perturbations.
(Capturing localised artifacts)
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FIXED POINT AND OBJECTIVE CONVERGENCE

Ohjective Convergence of Plug-and-Play
With Gradient Step Denoisers

Fixed point convergence can be (comparably) easily achieved when
considering a proximal gradient type update:

k+1 _ kY — k _ k The convergence of plug-and-play (PnP) denoisers
X - R(X ) =g (X AVD (AX ! y)) . used with half-quadratic splitting was established in
When Ay is trained to be 1-Lipschitz, i.e., with constant L < 1 and [26]. The denoiser is constructed as a gradient step

denoiser, as explained in the “PnP Denoising”

section; i.e., D,=1d—Vg,, where gs s proper,

converge to a fixed point lower semicontinuous, and differentiable with an

x® = R(Xoo) L-Lipschitz gradient. The PnP algorithm proposed in

) [26] takes the form xii = prox.;(x: —TAVgs(x:)),

where f:R‘—~ RuU{+c} measures the data fidelity

This tells us that the iterations are stable, and is assumed to be convex and lower semicontinu-

ous. Under these assumptions on f and g, the follow-
ing guarantees hold for 7 <1/AL:

- Objective convergence is more desirable, but also more 1) The sequence F(x), where F=f+Ag,, is nonin-

restrictive. in short: creasing and convergent.
! ’ 2) Here, || xiii —x:|, — 0, which indicates that iterations

We need to parameterise the network Ag in such a way that it are stable in the sense that they do not diverge if one

corresponds to the gradient of a (possibly convex) function iterates indefinitely.
3) All'limit points of {x.} are stationary points of F(x).

A < ||A] |3p , then the above iterations are contractive and will

BUT: This does not say anything about the “goodness” of x®.

(representing the regulariser).

[Gilton, Ongie, Willett, IEEE Transactions on Computational Imaging, 2021] [Hurault, Leclaire, Papadakis, arXiv:2110.03220, 2021]
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CONVERGENT REGULARISATION

Adversarial Regularizers: Why Convexity Matters

In fact, we can even obtain a convergent
regularisation strategy with a learned regulariser:

Learn just the regulariser such that

D(AX, y) + aRG (X),
we can then enforce conditions to ensure well-
posedness of the solution operator.

—> Simply put: when Ry is convex we obtain a @ o=s o=z @01

classical convergent regularisation
- Composition with a regularisation functional g:

D(Ax,y) + ag(Rqe(x))
—> Plug-and-play with linear denoiser: Quadratic R

BUT: We need to solve again the variational
problem, which is slow. (d) =05 (e) 5=0.25 (f) Ground-Truth
[Lunz, Oktem, Schénlieb, NeurlPS, 2018] [Li, Schwab, Antholzer, Haltmeier, Inverse Problems, 2020] [Hauptmann, Mukherjee, Schénlieb, Sherry, arXiv]
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CONCLUSIONS

* Inverse problems and regularisation theory helps to understand the problem
* Provide convergence, stability, and data-consistent reconstructions

* Classical methods are reliable but have shortcomings:
computation times, expressivity, hand-tuning

* Data-driven approaches can solve shortcomings, but guarantees may be lost

- We can reintroduce varying levels of guarantees
— The more theoretical guarantees we get, the more conditions are enforced

More restrictive conditions > Worse (quantitative) performance
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WHAT’'S TO COME?

* Currently: trade-off between performance and theoretical guarantees.

* But how much guarantee is needed, if performance is better?
- Importance of challenges like FastMRI!
—> Do clinicians /engineers care?

* Untouched here: Generalisation and the role of training data

— Here reconstruction guarantees can be certainly usefull
- Need for more semi- or unsupervised methods?

Learned approaches are here to stay!



