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Overview of ML activities in Weather Models

* Neural-LAM:

« Graph Neural-Network using Encode-Process-Decode paradigm to emulate atmospheric flow
model (traditional Numerical Weather Prediction used for operational forecasts at DMI)

« LDCast

« Latent Diffusion based precipitation nowcasting from using radar observations
« LeeWaveNet

» UNet (with transfer learning for predicting synthesized wavepackets) to detect and characterise
lee waves over Greenland to warn air traffic

« Applications of self-supervised learning

« Denoising of LIDAR-based lower-atmosphere water-vapour observations
 Mesoscale cloud organisation in the tropics

Other activities (not covered today)
Quality Control of crowdsourced data
GNN Data-driven Atmospheric Dispersion

SciML Bayesian Differential equations for Road Weather Conditions
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Building Neural Limited Area Models: Kilometer-Scale
Weather Forecasting in Realistic Settings

Simon Adamov™12®, Joel Oskarsson™3*®, Leif Denby*®, Tomas Landelius®®, Kasper
Hintz*”, Simon Christiansen®, Irene Schicker®, Carlos Osuna', Fredrik Lindsten®, Oliver

Fuhrer! ) and Sebastian Schemm?’
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ol & evmlie > o Work lead by PhD students Simon Adamov (MeteoSwiss) and
g Joel Oskarsson (SMHI) on training and skill of LAM models.
' . ./.7\'. . . N Preprint out soon (weeks). Highlights:
' ' Xe 1 Xk Ris1 ' ' C » Training takes order 2K GPU hours
« Comparable, and on some metrics better, that operational
preprint on https://arxiv.org/abs/2504.09340 NWP forecast model (Harmonie-AROME)
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https://arxiv.org/abs/2504.09340

How do these models work?

« Weather state X'
 Dynamics model X' =/(X""....X"7)
« Approximate with machine learning model f ~ f

Xt x2 ... XxT
 Train on dataset of trajectories

— Forecast data: Fast surrogate model
3o — Reanalysis data: Surpass existing NWP
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How do this GNN-based forecasting models work?

3d atmospheric
state at time t

78 channels
per (lat, lon) node

(+solar, landsea, etc)

from physical variables on
lat/lon grid to latents on
icosahedron grid

using message-

passing GNN

1. Encode l

Latent state

256 channels
per node

Figure 1: Using the current atmospheric state, the model evolves the state forward by 6 hours. The
3D atmospheric state is defined on a uniform latitude/longitude grid, with 78 channels per pixel (6
physical variables x 13 pressure levels = 78 channels). An Encoder GNN encodes onto latent features
defined on a icosahedron grid, a Processor GNN performs additional processing of the latents, and a

Latent state

256 channels
per node

2. Process
using 9 rounds of
message-passing GNN on
icosahedron grid

3d atmospheric
state at time t+6hr

78 channels
per (lat, lon) node

4. Add
....................................................... the state change to input

state to determine new state

Change in 3d
atmospheric
_— state

78 channels
per (lat, lon) node

3. Decode

from latents on icosahedron
grid to physical variables on
lat/lon grid using
message-passing GNN

Decoder GNN maps back to the atmospheric state on a latitude/longitude grid.
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Figure 2: A schematic view of the local graph connectivity in the Encoder, Processor, and Decoder.
Left: local spatial and channel information is encoded into an icosahedron node using data from
nearby nodes on the input latitude/longitude grid. Center: data on the icosahedron node is further
processed using data from nearby icosahedron nodes (including itself, which is not explicitly shown).
Right: the output latitude/longitude data is created by decoding data from nearby icosahedron nodes.

Ryan Keisler, 2022



Ok, but what are GNNs (Graph Neural Networks)?

)p—)hg

A

D Equivariant and invariant layers
.-y  feature extensively in GNs

Xv > 0 —

e Petar Velickovi¢ Graph Neural Networks: Geometric, Structural and Algorithmic Perspectives Part 2
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The three “flavours” of GNN layers
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Hi-LAM: Hierarchical multi-scale graph

* 4 levels of nodes in mesh graph
 Intra-level edges
» Inter-level edges between adjacent levels

» Sequential GNN message passing up and down

the hierarchy
Encode Process Decode—
Hierarchical
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ulOm (m s**-1), t=1 (3 h)
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Skill compared to reanalysis — graph desig

On flat vs hierarchical graph architecture:

« Difference between flat (M.S.) and
hierarchical (Hi) in general small, key is
to include long-range connections

 10m wind in particular does show clear
improvement with hierarchical vs flat
mesh

On rectangular vs triangular mesh:

« triangular meshes show less improvement
with higher levels, but maybe due to edge-
length growing slower compared to
rectangular mesh

Error calculated against reanalysis dataset
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Figure 10. RMSE on validation set for DANRA models trained using different graph configurations.
We consider Rectangular (Rect.) and Triangular (Tri.) graphs, both in Hierarchical (Hi.) and Multi-
Scale (M.S) setups with different number of levels (lev.). Recall that in multi-scale graphs all the levels
are collapsed into one final mesh graph.



Skill compared to station observations

On forecast skill of ML model vs

1.6 —
operational NWP: et Ez: M
- Data-driven model in general g 23_0
better for first 9 hrs, and 012 520
comparable with NWP model 1. S
at least out to 18 hrs (we don’t =
have forecast archive for “Elapsed Forecast Duration (h) " forecast Lead Time (hours)
DANRA beyond this) (a) 2 m temperature (2t) (b) 10m wind

Figure 22. RMSE along elapsed forecast duration for the DANRA models compared to station obser-
Error calculated against DMI synop vations.

Station observations for one year of
forecasts with ML model
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MLLAM

V

ML-LAM collaboration Unfollow

Collaborative research software development around data-driven weather forecasting for limited area modelling

2 29 followers @ https:llioin.slack.cam[tlml—lam,’shar...

pinned Customize pins ® View as: public

You are viewing the README and
pinned reposltories as a public user.

{1 neural-lam public i (=] milam-data-prep Public

R.eSfaarch Software f-or Neural Weather prediction for generation of 'training—opﬂmised weather datasets You can create a README file visible to
Limited Area Modeling from declarative syntax anyone.
@ Python 7 145 Y 58 @ python wo 915 Get started with tasks that most

successful organizations complete.

=] weather—model-graphs public

Discussions
Tooling for creating, visualising and storing data-
driven weather-model graphs Set up discussions 10 engage With
@ python 13 Y12 your community!

Turn on discussions

2 Repositories

Q Finda repository... Type = Language ~ Sort ~ m people
=}

6:0:07

)

¥

-
—

milam-exps public

pipeline for milam experiments

ith isati
github organisation: https://github.com/mllam/

Slackspace' htt joi m/tvm m/sh n m hX7n
: Ds://_|0|n.sla
ck.com/t/ml-lam/shared_invite/zt-2t112zvm8-Vi6aB
- aBvhX7nYa6Kbj LkCB
) Q

de
velopment doc: https://bit.ly/mllam-plan
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ML Pilot-project infrastructure §

Last updmiad: Q2042035

Eurapaan Weather Cloud

When the ML-pilot started we needed a place to:

Visualisatian ] i)

Wabappicaton Oityect stora for raining
= data

- Track our experiments (MLFlow) o ™ e, o

- Visualise results (Webserver) ST

Log and manitor the £
raady products axacution sats and culpuws /HPC {Gefion / Lumi / Leonarda / Atos) \

- Store training data for Gefion (+ EuroHPCs) o ||| e o= | [==

i T - e e
- Convert input data from GRIB to Zarr. _ v .l 2
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ECMWF Organisatian MLLAM Qrganisation
Calection of Anems{ rapesitoniss Organisation with runnans tasting
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ML Development Pipeline

5. Orchestrated, recorded and reproducable through dvc

3 6.
— — R — —
' not yet evaluation
RN 1. oo ovingar, | 2] 200500 | Tramangoar 1o, | onicr
GRIB (pressure_eve s.zarr, training (in neural-lam) | main—» . Y Ed-—_)
files height_levels.zarr and L dataset compatiable generated through
single_levels.zarr) zarr rendered Jupyter
— — g — notebooks
B — | tracked to miflow
WeatherBench
server
ERAS zarr j

1.https://github.com/leifdenby/dmi-danra-to-zarr/, built on gribscan
2.https://github.com/mllam/mllam-data-prep, built on xarray
3.https://github.com/mllam/neural-lam

4. miflow server hosted on (air-gapped) Gefion HPC and AWS

5.https://qgithub.com/milam/mllam-exps built on DVC
6.https://qithub.com/dmidk/dmi-mllam-verification-notebooks render to S3 bucket

e
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https://github.com/mllam/mllam-exps
https://github.com/mllam/mllam-exps
https://github.com/mllam/mllam-exps
http://dvc.org
https://github.com/dmidk/dmi-mllam-verification-notebooks
https://github.com/dmidk/dmi-mllam-verification-notebooks
https://github.com/dmidk/dmi-mllam-verification-notebooks
https://github.com/dmidk/dmi-mllam-verification-notebooks
https://github.com/dmidk/dmi-mllam-verification-notebooks
https://github.com/dmidk/dmi-mllam-verification-notebooks
https://github.com/dmidk/dmi-mllam-verification-notebooks

LDCast

ML model for precipitation nowcasting
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Precipitation Nowcasting
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https://bit.ly/mlcast

Lee\WaveNet

Detect trapped lee waves to warn aviation authorities
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Lee\WaveNet — detection and characterisation of
atmospheric gravity waves

/ Skip connections to
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Head: 1x1 & 3x3 convolutional and nonlinear
layers fine-tuned for wave characteristics

UNet-based architecture trained to detect
(segment) and characterise (scalar values
measuring characteristics) of trapped lee

waves
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Lee Wave Test Data: Characteristics Prediction 2021-02-14 T0900Z

(a) Data & Wave Location Prediction

Upward Air Velocity (m s ~1)

[
o

N
o
mplitude Prediction (m s ~1)
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(b) Wavelength Prediction

Upward Air Velocity (m s ~1)

PhD project of Jonathen Coney (Univ Leeds), paper: https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.4592



https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/qj.4592

How was LeeWaveNet trained?

First, trained UNet to predict hand-drawn
segmentation mask

pressure = 70000.0, forecast_period = 0 days 00...

Second, UNet encode+decoder frozen, but
added 1x1 convolutions to predict synthetic
gravity waves

Synthetic lee wave data and characteristics
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pressure = 700, time = 2024-05-14T23:00:00, for...
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Courtesy Eleni Briola
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Self-supervised cloud-organisation

|[dentifying climate-feedback effects in cloud dynamics



Stevens et al 2020, QJRMS



What happens between the “archetypes”

Are they all that exist?
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truecolor RGB
composite from
GOES-16 from
daytime on 2nd Feb
2020

— tiling Ebox

—— rect domain

1000km meridional and 3000km zonal
width local Cartesian reprojection

centered on
(lat, lon) = (14, -48) in tropical Atlantic




Extracting the embedding manifold

« ldea: maybe all the tile embeddings
lie on some manifold in the
embedding space

Use Isomap method , to extract
manifold in high-dimensional
embedding space and map to 2D

— “Isomap seeks a lower-
dimensional embedding which
maintains geodesic distances
between all points”

With this | now have a “map” of all
possible types of organisation

What does the world of cloud organisation look like?



Extracting the embeddmg manlfold

1.00 Idea: maybe all the tile embeddings
lie on some manifold in the
0.75 - embedding space
| « Use Isomap method (Tenenbaum
00 et al 2000) to extract manifold in
high-dimensional embedding space
0,25 - and map to 2D
0.00 - — ‘Isomap seeks a lower-
dimensional embedding which
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Self-supervised denoising

Finding cloud-triggering atmospheric structures



How do | “see” these structures?
The Barbados Cloud Observatory CORAL Raman LIDAR

Measure water-vapour profiles (below cloud), air
temperature, aerosols and cloud properties.

resolution:

— horizontal wind: v ~ 5m/s
— temporal resolution: At =4s
— => horizontal res: Ax ~ 20m
— vertical res: Az ~15m

Developed and run by llya Serikov (MPI-
Meteorlogy, Hamburg)
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* For supervised learning we
need pairs of noisy input and
clean target data, but for
real-life observations we may
not have clean data

» Could synthesize training data
using an assumed noise
distribution applied to synthetic
data - need simulated data and
noise model

« Can | do something with just
the noisy observations?

Noisy image Target

Learned

Noisy image .
y > mapping



(Krull et al 2019)

Assume noise at any two points in input is
uncorrelated

Exploit that image contains a high degree of
structure

Learn correction to point value from looking only
at neighbouring pixels. Network forced to ignore
central pixel by overwriting with random pixel in

neighbourhood during training

— If central pixel is included network simply
learns identity

|dea: if noise is uncorrelated then the only thing
the network can learn from the context
(surrounding) pixels is the true denoised value
of a pixel

\

Py e,
7

//
”

Figure 3: Blind-spot masking scheme used during
NOISE2VOID training. (a) A noisy training image. (b) A
magnified image patch from (a). During N2V training, a
randomly selected pixel is chosen (blue rectangle) and its
intensity copied over to create a blind-spot (red and striped
square). This modified image is then used as input image
during training. (¢) The target patch corresponding to (b).
We use the original input with unmodified values also as
target. The loss is only calculated for the blind-spot pixels
we masked in (b).
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Future directions:

outstanding issues with data-driven models

Frontiers of ML-based purely data-driven weather
forecasting, are (lack of) representation of:

« extremes, e.g. temperature and particularly
rainfall

 highly non-linear physics, e.g. cloud formation

« physical consistency, e.g. geostrophic balance

Analysis so far has only been on global (Ax ~ 20km)
forecasts, the issues are likely to be more acute a

km-scale (Ax ~ 2km).

RMSE pixel by pixel - magnitude of differences

Cold extremes Hot extremes

(@

R e :
-100 0 100 -100 0
% difference in RMSE vs IFS HRES longitude % difference in RMSE vs IFS HRES
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Olivetti & Messori 2024
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Building collaborations with DTU

Why work with us? :)

 Interesting datasets (wealth of observations, reanalysis, etc)

* Interesting applications (weather preparedness, disaster response, etc)
« QOperationalisation — see your research used

« Expertise in atmospheric science, scientific computing and increasingly
SciML



https://dmidk.qgithub.io/sciml-dmi/

O B dmidk.github.io/scimi-dmi/

How to get in touch? T —

About  GPU platforms  Projects ~ Search  Tags

sciml-dmi

Scientific Machine Learning at DMI

Hil

. . .
« Joinor present at our SciML n IOnthly n Ieetlngs -
. . .
C O n t a Ct S I m O n ( S kC @ d m I d k fo r d e t al I S Welcome to the website for people interested in scientific machine learning (SCiML) at the Danish Meteorological Institute (OMI) - SCIML is the
/. . discipline of combining machine learning with scientific computing see e.g. sciml.ai for an overview. This website serves to organise our work and
N — allow others to join us.

If you're based at DMI and would like to join you can simply make a pull-request to add yourself to this website: people.md

‘We meet the first Monday of every month (think “ML Mondays") at 11am local time at DMI - everyone is welcome!

« Email anyone on our team

* Me, Leif Denby (lcd@dmi.dk) — I’'m going on
leave till September though ki

downscaling NN for image regression (and
classification)

leaming. convolutional Quality control of smartphone
netvorks pressure observations climate models
Radiometry: determine
terrestrial albedo from Moon
images

meso-scale cloud organisation,
denoising of LIDAR water
vapour observations

 Talk to me after this :
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Dec 2023: Ensemble data-driven model (GenCast, Google)

“Producing a single 15-day trajectory
with GenCast takes around a minute
on a Cloud TPU v4, and so N
ensemble members can also be
generated in around a minute with N
TPUSs, enabling the use of orders of
magnitude larger ensembles in the
future”

<> @ Danish
® Meteorological
Institute

GenCast: Diffusion-based ensemble forecasting for medium-range weather

ERAS5 Analysis GenCast GraphCast Spectral power
b Sample #1 C Sample #2 d Sample #3 @ Ensemble mean

Forecast from
12h earlier

Forecast from
10d earlier

104 103
Wavelength (km)

Figure 3 | Visualization of representative states produced by GenCast compared to GraphCast. (a) ERAS
analysis state for specific humidity at 700hPa at 6pm on the 29th of September of 2019. (b-d) 3
sample forecasts of this state by GenCast from 12 hours earlier. (¢) Ensemble average obtained
by taking the mean of 50 sample forecasts by GenCast from 12 hours earlier. (f) Forecast by the
GraphCast (model which is deterministic), made 12 hours earlier. (g) Spectrum of the fields shown in
panels (a-f), with colors matching the frames of the panels. (h-m) Same as (b-g), but for forecasts
made 10 days earlier. Unlike deterministic GraphCast, which expresses uncertainty as blurring which
increases with lead time (f, 1), we observe how the sample forecasts produced by GenCast are sharp
(g, m), regardless of whether the forcasts are for 12 hours ahead (g, b-d) (where the three samples
are very similar) or 10 days ahead (m, h-j) (where the three samples differ more). The samples can
still be averaged to produced a blurry mean state (e, k). Additional visualizations and an explanation
of how this date/time was selected for visualisation are available in Appendix A.8.
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the rugged cliffs along Big Sur’s garay point beach. The
crashing blue waters create white-tipped waves, while the golden light of the setting sun illuminates the
rocky shore. A small island with a lighthouse sits in the distance, and green shrubbery covers the cliff's
edge. The steep drop from the road down to the beach is a dramatic feat, with the cliff’'s edges jutting
out over the sea. This is a view that captures the raw beauty of the coast and the rugged landscape of
the Pacific Coast Highway.
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